
when d is zero or negative. Unless the value of j ,  equals X I  (O)((d + jil)2/(ab) }, the two roots of Eq. 30 will be distinct. 

DEFINITION O F  SYMBOLS 
p c  = decay constants of exponentials 
r n  = roots of cubic equation kEq. 19) 
V, = volume of distribution of the compartments 
c _ ‘  - integration constants proportional to dose 
tl* = time at  which minimum occurs inXl( t )  

tz* = time a t  which maximum occurs inXz(t) 
t3* = time a t  which maximum occurs in Xs(t); X3(t3*) = Xl(t3*) 

t(0) = time a t  which extremum occurs in F ( t )  
Xo = concentration in -Compartment u 
i, = intercepts of three resolved plots whose sum depicts In X (t) 

1 3 ~ 2  = permeability of drug across the barrier between Compart- 

tl** = time a t  which maximum may occur inXl( t )  

ments 1 and 2 
u12 = (dlZ/Vl) + (I312/V2) 
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Hydrodynamic Analog Model for Pharmacokinetics 11: 
Critical Examination of Model and Its 
Contribution to Pharmacokinetics 

V. S. VAIDHYANATHAN 

Abstract 0 A comparison of the conventional pharmacokinetic 
models and the previously proposed hydrodynamic diffusion ana- 
log model is presented. A significant result that an n- compartment 
system can exhibit a t  best (n - 1) extremum times in the concen- 
tration-time plot of the central compartment under appropriate 
values of physiological parameters is presented. The observation of 
kinks experimentally in certain physiological-drug systems is thus 
shown to be amenable to explanation. 

Keyphrases Models, hydrodynamic diffusion analog-proposed 
for pharmacokinetics, critical examination, equations 0 Diffusion 
model, hydrodynamic, analog-proposed for pharmacokinetics, 
critical examination, equations Pharmacokinetics-hydrody- 
namic diffusion analog model proposed and critically examined, 
equations 

The hydrodynamic analog of the multicompart- 
ment model presented previously (1) leads to certain 
significant conclusions, which agree with the results 
of the familiar pharmacokinetic models and provide 
new insights. This article presents a critical examina- 
tion of this contribution to pharmacokinetics and a 
possible observation of aperiodic oscillatory phenom- 
ena similar to the kink observed in the case of the di- 
cumarol system. 

ANALYSIS 

Mathematically, both the hydrodynamic analog and familiar 

multicompartment models essentially involve solutions of coupled 
first-order linear differential equations of the kind (2): 

X ( t )  = A X ( t )  (Eq. 1) 
where X is an n- component vector whose elements represent con- 
centrations a t  time t of the n-compartment diffusion model (1). 

In the familiar pharmacokinetic model, these vector elements 
represent the amount of substance present in each compartment. 
The super dot in Eq. 1 denotes the first time derivative. The time- 
independent elements of matrix A of Eq. 1 represent the permea- 
bilities 01‘ the drug in barriers between connected compartments in 
the hydrodynamic diffusion model. Thus, when there is no connec- 
tion between Compartments i and j ,  the corresponding matrix ele- 
ment A,J is zero. 

In the familiar pharmacokinetic model, the elements of the cor- 
responding matrix are linear combinations of assumed first-order 
rate constants. For example, the partial contribution (due to the 
existence of connectivity with Compartment 1 )  to the rate of de- 
crease in the amount of material in Compartment i is assumed to 
be given by: 

Y , = - h , , Y , + k , , Y ,  (Eq. 2) 
where YJ and Y,  are the amounts in Compartments J and i ,  respec- 
tively, a t  time t; and the k,J’s are the assumed first-order rate con- 
stants. 

Thus, volumes of distribution of various compartments are not 
introduced in the formulation of the familiar pharmacokinetic 
model and these need to  be extracted from experimental data on 
the basis of ad  hoc assumptions. The decay constants of conven- 
tional pharmacokinetics are considered not as functions of vol- 
umes of distribution. Since volumes of distribution of various com- 
partments in an n- compartment model definitely play a role in the 
material distribution in various compartments at arbitrary finite 
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time, t, such volumes of distribution lie buried in the expression of 
familiar pharmacokinetics, which is a solution of Eq. 1, namely 
that the amount of material of Compartment j is given by: 

(I%. 3) 

In the diffusion model ( l ) ,  one defines the partial contribution 
to the rate of decrease in concentration of Compartment i, due to 
connectivity with Compartment j ,  by the relation (see Eqs. 9 and 
10 of Ref. 1): 

(Eq. 4) 

In this manner, the influence of volumes of distribution of vari- 
ous compartments on the time course of concentrations in various 
connected compartments are explicitly introduced in the formula- 
tion of the differential equations in the hydrodynamic (diffusion) 
analog (1). This approach has the advantage of precisely incorpo- 
rating the influence of the volumes of distribution, the permeabili- 
ty properties of barriers between connected compartments to drug, 
and the elimination rate constants with the decay constants exper- 
imentally measurable and the coefficients of the solution of Eq. 
1-uit. (see Eqs. 17, 22, and 26 of Ref. 1): 

Y , ( t )  = C A , ,  exp (A$) 
t - 1  

V,X,(t)  = a,,rx, - X,I 

~ , ( t )  = I S , ,  exp ( p o t )  (h. 5) 

Thus, there are no uncertainties about the role played by char- 
acteristic parameters of the physiological system in the determina- 
tion of the time course of concentrations of drug in any compart- 
ment. This aspect may be considered the salient feature of the dif- 
fusion analog. In addition, the exact relationships existing between 
coefficients Sj, and Si, can be expressed in terms of eigenvalues. 

Returning now to another aspect of the pharmacokinetic prob- 
lem, one recognizes that concentrations in compartments other 
than the central one (Compartments 2 and 3 of the three-compart- 
ment model of Ref. 1) are zero at  initial time and at  t = a. Since 
concentrations are positive definite quantities for intermediate fi- 
nite times, there must exist a finite time t,* when X u  = 0. Thus, 
the concentration-time plot of the (n - 1) compartments of n- 
compartment systems should all exhibit maxima. If the n th, cen- 
tral compartment also exhibits extremum times a t  which X l ( t )  
vanishes, then the observation of kinks and shoulders becomes 
amenable to explanation within the context of the diffusion model 
of pharmacokinetics. 

c- I 

DESCRIPTIVE ANALYSIS OF BEHAVIOR OF XI ( t )  

The time dependence of concentrations in the three compart- 
ments as depicted by the theory (1) are schematically presented in 
Fig. 1. Curves I1 and 111 represent the time dependence of concen- 
trations of Compartments 2 and 3, respectively, exhibiting extrema 
at times t 2* and t3* .  These are the shapes of concentration-time 
curves that will be observed for a three-compartment system with 
no chemical reactions. 

Figure 1 also shows three alternative curves, Ia, Ib, and Ic, 
which are mutually exclusive for the time dependence of concen- 
tration of drug in Compartment 1. Plot Ia is the familiar monoton- 
ic curve experimentally observed for X, ( t )  in many systems. This 
can be resolved into three distinct exponential functions by the 
well-known procedure of resolution of the plot of In X , ( t )  into 
three linear plots with positive intercepts i l ,  ip, and is on the con- 
centration axis. The procedures of obtaining the permeability coef- 
ficients, volumes of distribution, and elimination rate constants 
from such experimental data were presented previously (1). 

Plots Ib and Ic of Fig. 1 are schematic examples of X l ( t ) ,  which 
exhibit one extremum and two extremum times, respectively. Plot 
Ic is similar to the case of dicumarol behavior upon intravenous 
administration, exhibiting the “kink.” Plot Ib may be considered 
as a special case of plot Ic, where the two extremum points t l *  
and t I** as well as the inflection time coincide such that the time 
derivative of X l f t ) ,  while remaining negative most of the time, 
momentarily approaches zero. Such a behavior occurs when the 
rate of gain of material from Compartment 3 by Compartment 1 
equals the rate of loss to Compartment 2 from Compartment 1. 

For the three-compartment system, the time t 2 *  at  which con- 
centration in Compartment 2 attains maximum value is given by: 

p = (c2/c,) = (pl - p J F ) / ( p J F  - p , G )  

F = exp ( p 3  - pc,)t2* 

G = exp (p2 - P&* 

(Eq. & )  

(Eq.  66) 

fEq. 6c )  

Similarly, the time t 3 *  at which concentration in Compartment 3 
reaches a maximum value is given by: 

P 01iRi - P , R ~ H ) / ( P , R ~  - P ~ R J )  (Eq. ’ in )  

H = exp (P3 - P&A* 

exp ( p Z  - PIN,* 

(Eq. ‘ib) 

(F4 7c)  

R. (0 = 1,2,3) - El + mlr, + (Vl/6,,)M,t] (Eq. 7 d )  
Thus, the characteristic times tz* and t3* are independent of dose 
and are related to each other and constant parameters of the sys- 
tem by: 

P ~ c L ~ ( R ~ H  - RlF)  + pl/.l2(RiG - R J )  + 
PZPARJF - R&H) = 0 (Eq. 8) 

CONDITIONS FOR OBSERVATION OF KINK 

Assume that a system obeying the three-compartment hydrody- 
namic model exhibits a kink similar to Ic of Fig. 1 in the concen- 
tration-time plot of the central compartment concentration. Thus, 
both t I* and t I** exist for this system and are observable. When 
two such extremum times exist, evidently an inflection point t + 
should also exist. When these three real times exist, one has from 
Eqs. 20a -20e of Ref. 1: 

p l s l  + p~c&Q’~* = (1 P ) P ~ S , Y ~ *  (Eq. 9a) 

p1S1 + PP,S,Y,** = (1 + p)p.ls,Y,,** (Eq. Yc) 

where: 
S, = 1 + rum (Eq. 100) 

(Eq. 10b) 

(ES. 10c) 

Y,* = exp ( p 2  - p , ) t l *  

Y,* = exp(Cc, - pl)t,* 

2, = exp (p2  - wl)t l+  (Eq. 1Od) 

Z, = exp ( p 3  - p l ) t , +  (Eq. 10e) 

Y:* = exp ( p 2  - pl)t ,** (Eq. 10f)  

Y3** = exp ( p 3  - pl)tl** (Eq. log) 

Similar to the existence of the critical point in van der Waals’ 
isotherm, when the three times tl*, tit, and tl** equal each other, 
one has the expression: 

exp 1(p2 - k3)tl*l = [(I + P ) S J c ( : h  - I ~ J ] / [ P S ? P A P I  - PC(L)] 

The conclusion that one arrives a t  from Eqs. 9 and 11 is that these 
critical times are independent of dose. This conclusion is substan- 
tiated by the case of dicumarol where the time at which kink oc- 
curs is essentially independent of the dose of drug. 

Since the left-hand side of Eq. 11 is positive definite, in order 
that t I*  exists and is real and observable, the necessary condition 
is: 

(1 + p ) S , / ( p S z )  = - C,(1 + r,)m)/[C,(I + r p ) ]  > o 

(Eq. 1 1 )  

(Eq. 12) 

When t I*, t 17,  and tl** exist and are distinct, one has: 

- iJ/i.! = ( p l y , *  - P J ~ ) / ( P , Y ; *  - P J J  (Eq. i:io) 

= (Y,* - Y,**)/(Y,* - Y,,**) (Eq. 186) 

For the sake of brevity, the following discussion to explain the 
possibility of experimentally observing curves of types Ib and Ic of 
Fig. 1 is limited to systems in which a13 is greater than k2o. It can 
be shown (see Appendix) that CI and CS are negative definite for 
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Figure 1-Curves II and III represent time dependence of con- 
centrations in Compartments 2 and 3, respectively, of the three- 
compartment hydrodynamic model. The time dependence of 
concentrations of Compartment 1 i s  represented schematically 
by plot l a  when there is no extremum time, by plot I b  when there 
is one extremum time at tl*, and by plot Ic  when there are two 
extremum times. 

this system. Recall from Eqs. 17a and 20e of Ref. 1 that  one has: 
all + ali + h.0 = - ( P I  + p L  + pi )  > 0 (Eq. 14) 

The parameters a 1 2 ,  a13,  pa)^, k20,  and re's have dimensions of re- 
ciprocal seconds. Thus, all of these parameters can be expressed as 
proportional to k 2 0 ,  the proportionality constants being simple 
numbers. 

When specifically considering the case of rl and r2 being nega- 
tive and r3 positive, both S1 and Sz are negative provided that the 
magnitudes of rlm and rzm are greater than unity; S3 is positive 
definite. The requirement that both S1 and S Z  are negative is as- 
sured when ( 6 1 z / V z )  < an < k 2 o .  

Under these conditions, both CIS1 and C3S3 are positive, 
while CzSz is negative. With these preliminaries, one is now in a 
position to discuss the existence or nonexistence o f t  12, the time a t  
which time derivative of X , ( t )  vanishes. 

A function F(t), defined by: 

F ( t )  = C,Sl(Ccl/pj)exp [ ( P ,  - ~ h t l  + 
C L S L ( p 2 / p  J exp [ ( p i  - p l)t] (Eq. 15a) 

has the behavior of either plot A or B of Fig. 2. Note that F ( 0 )  = 
I( 1 (O) /p3  is positive. It can be shown that F(t) can be either mono- 
tonic with time or a t  best can have one and only one extremum 
point. When no extremum point exists, the behavior of F f t )  is 
schematically represented by plot A of Fig. 2 .  

When an extremum point exists in F(t) ,  the behavior of F(t) is 
represented by plot B of Fig. 2. The extremum point of Ff t ) ,  to, is 
given by: 

F(t ,*)  - -c,s, oh 1%) 

to = ( p 2  - Pl)-'lnl[- ~ , ~ , P , ( C ( ~  - P ~ ) I / [ c ~ ~ ~ I I ~ ( ~ ~ ~  - rd11 
(Eq. 16) 

In order that t 0 exists, the quantity within the brackets of Eq. 16 
should be positive and greater than unity. Figure 2 also shows 
plots C, D, and E, drawn parallel to the time axis and representing 
three possible magnitudes of C3S3; C3Ss is negative in curve C 
and positive in plots D and E. 

The condition that X , ( t )  is positive definite for all finite times 
requires that C3S3 is positive definite. The intersection point be- 
tween F(t)  and the line drawn parallel to the time axis with ,mag- 
nitude C3S3 evidently denotes the time t ]*, a t  which time X ~ ( t )  
= 0. Thus, when F(t)  for a system is monotonic with time, no ex- 
tremum point in X l ( t )  occurs. Also, when for a system F f t )  has an 
extremum and has the shape of curve B, if the magnitude of C3S3 
is large so that  no intersection occurs, then no extremum point oc- 
curs in X , ( t ) .  Thus, experimental exhibition of the kink in the 
plot of X l ( t )  of a drug in a physiological system, simulating a 

t -  

Figure 2-Time dependence of the function F(t) is shown 
schematically by curve A when there is no extremum and by 
curve B when there is an extremum. Curves C,  D,  and E re- 
present three possible values of ( - C3S3). 

three-compartment model, is critically dependent on the magni- 
tude of C3S3 (hence on i3) and on the existence of t  0 of F f t ) .  

Observation of kinks in the plot of X l f t ) ,  as in the case of dicu- 
marol, is not excluded by the hydrodynamic diffusion analog of 
compartment models in pharmacokinetics. Since extremely strin- 
gent conditions of the relations among physiological parameters 
need to be satisfied for the observation of such kinks, it is no won- 
der that  most systems exhibit only plot Ia of Fig. 1 .  

AN ILLUSTRATIVE CALCULATION 

One may compute that k 2 o m  = 2.50 for a system having the fol- 
lowing magnitudes for the various parameters: ( h 1 3 / V 1 )  = 0.1733 
kzo, ( & 2 / v i )  = 0.36 kzo,  a 1 2  = 0.76 kzo ,  and a13 = 1.24 k20. One 
may also compute by the methods described that, for this system, 
P I  = -1.6 kzo .  1 2  = - 1 . 2  k20, and p 3  = -0.2 kzo;  p = -1.1577 for 
this system. One may verify that for this system the plot of 
Xl(t)ldose resembles plot Ib of Fig. 1, with one extremum point 
occurring slightly above 2.3 ( k z o ) - ' .  

DISCUSSION 

The presented analysis can be extended to n- compartment sys- 
tems, with arbitrary choice of connectives. The main results of 
such deliberations are that the time dependence of concentrations 
of any compartment can be expressed in the form of Eq. 5 with n 
exponential terms. The decay constants are related to the volumes 
of distribution and permeabilities of barriers between compart- 
ments for the drug, by relations analogous to Eqs. 17 and 27 of Ref. 
1, except that  one has to find the roots of an nth order polynomial. 

However, with appropriate values for the physiological parame- 
ters of the system to the drug, corresponding functions F,(t) can 
have more than one extremum time. Thus, with appropriate value 
of C,S,, which should he positive definite, the plot of the concen- 
tration of the central compartment in which drug is introduced ini- 
tially can, in principle, exhibit (n ; 1) extremum times (3-5)  a t  
which X l ( t )  = 0. However, since X l f t )  is negative definite for 
very small times and for very large times, the number of physically 
realizable extremum points should be an even number. Therefore, 
observation of two such kinks for a specified drug in the plot of In 
X I(t) requires that the physiological system behave for this drug 
as a five-compartment system. 

If the drug participates in a chemical reaction in the barriers 
connecting compartments, then these have the effect of altering 
the corresponding matrix element of matrix A of Eq. 1 .  Thus, ac- 
tive transport of a drug across a specified barrier has the effect of 
changing the magnitude and sign of the corresponding matrix ele- 
ment. 

94 /Journal of Pharmaceutical Sciences 



If the drug participates in a chemical reaction in the compart- 
ment fluid phase of the physiological system, such effects may con- 
tribute to either alteration of corresponding element of vector X 
of Eq. 1 or, in principle, change an n-compartment model to be- 
have as an ( n  + 1)-compartment model. These considerations will 
be discussed in future publications; for the present, it is concluded 
that such a phenomenon is capable of possibly explaining certain 
tvpes of “aDeriodic biological oscillatorv” after effects observed - _  - 
with certain drugs in physiological systems. 

APPENDIX 

Defining the quantities c and [by: 

6 = + ca,,/v,, 
i- = c + k,,, 

one has: 
w = kLO - t 

Equations 22a-2% of Ref. 1 can now be expressed as: 

C , ( J , / ? )  = - ( P J  + P A  - i- 
C1(J , /q )  = ( P I  + CCJ) + r 
C J J J ? )  = +PI + P L )  - r 

J ,  = (PI - & ) ( P ,  - P J  

J ,  = (PI - Pi)(P, - PI) 

J ,  = (1, - VJKP1 - P J  

(Eq. A l a )  
(Eq. A lb )  

(Eq.  A2) 

(Eq. A3a) 

(Eq. A3b) 

(Eq. A3c)  

(Eq. A3d) 

(Q. A3e) 

0%. A3f)  

The J,’s, 7 ,  and { are positive definite. The decay constants are 
distinct and are negative definite. They may be ordered such that  

their magnitudes satisfy the inequalities oflplJ > lpd > I p d .  
I t  is evident that both C1 and C3 are negative when the magni- 

tude of < is greater than - ( P I  + pz)  [greater than -(p2 + p3) ] .  Be- 
cause of the constraint expressed by Eq. 216 of Ref. 1, CZ should 
be positive definite, which is assured by Eq. A3b. 

The condition imposed by Eq. 12 for the existence o f t  I *  is that 
the ratio (1 + r3m)/(1 + rzm) should be positive. This condition is 
evidently satisfied if the roots of cubic Eq. 19 of Ref. 1, r2 and r3, 
are both positive and have a magnitude less than k z 0 .  This condi- 
tion is also satisfied if both rz and r3 are negative, provided the 
magnitudes of rzm and r3m are greater than unity. I t  is also satis- 
fied if either r2 or r3 is negative, provided the product of negative 
root and m has a magnitude less than unity. 

When a13 is greater than kzo ,  from Eq. 17c of Ref. 1 it follows 
that R = -(rlrzrd is negative. This requires that, when r l  is neg- 
ative, r2 and r3 must have opposite signs. 

REFERENCES 

(1) V. S. Vaidhyanathan, J .  Pharm. Sci., 64,88(1975). 
(2) A. Resign0 and G. Segre, “Diffusion and Tracer Kinetics,” 

(3) J. Z. Hearon, Physiol. Reu., 32,499(1952). 
(4) F. M. Snell, in “McGraw-Hill Encyclopedia of Science and 

Technology,” McCraw-Hill, New York, N.Y., 1960, p. 332. 
(5) C. D. Thron, Bull. Math. Biophys., 34,277(1972). 

Blaisdell, Waltham, Mass., 1966. 

ACKNOWLEDGMENTS A N D  ADDRESSES 

Received December 3, 1973, from the Department of Biophysi- 
cal Sciences and Center for Theoretical Biology, State  Uniuersity 
of New York at Buffalo, Amherst, N Y  14226 

Accepted for publication July 31, 1974. 

Potential Anticancer Agents 11: Antitumor and 
Cytotoxic Lignans from Linum album (Linaceae) 

S. G. WEISS *. M. TIN-WA *. R. E. PERDUE, Jr.*, and 
N. R. FARNSWORTH*= 

Abstract A phytochemical study of Linum album (Linaceae), 
guided by bioassay with the 9KB cell culture, resulted in the isola- 
tion of podophyllotoxin and a new lignan, 3’-demethylpodophyllo- 
toxin; a- and P-peltatins were identified by comparative TLC. 

Keyphrases 0 Linum album (Linaceae)-isolation and identifi- 
cation of antitumor and cytotoxic lignans Lignans-isolation 
and identification from L. album, screened for anticancer and cy- 
totoxic properties 0 Anticancer agents, potential-isolation and 
identification of antitumor and cytotoxic lignans from L. album, 
screened for activity 

Linum album was found to be active against the 
P-388 leukemia and 9KB cell assay system in a ran- 
dom collection screening program for new anticancer 
agents. The chloroform extract of L. album yielded 
podophyllotoxin, a- and P-peltatins, and a new lig- 
nan, 3’-demethylpodophyllotoxin. Based upon spec- 
troscopic data, a structure was proposed for 3’-de- 
methylpodophyllotoxin, which was verified by prepa- 
ration of a derivative of known structure. The lignans 

podophyllotoxin, a- and P-peltatins, and 3’-demeth- 
ylpodophyllotoxin were shown to be a t  least partially 
responsible for the antitumor and cytotoxic activity 
of L. album extracts. 

EXPERIMENTAL’ 

Biological Activity-An ethanolic extract of L. album was 
evaluated for cytotoxicity; it was found active against Eagle’s 9KB 
carcinoma of the nasopharynx in cell culture (ED50 = 2.3, 2.5, and 
1.4 pg/m1)2 and showed in uiuo activity against the P-388 lympho- 
cytic leukemia in mice (T/C 136, 126, and 108 a t  133, 88, and 88 
mg/kg, re~pectively)~. Test  methods employed were those of the 
Drug Research and Development Branch of the National Cancer 
Institute (1). 

I The plant material used in this investigation consisted of the whole 
plant of L. album Kotschy ex Boiss. (Linaceae), collected in Iran during July 
1970 and provided by Dr. T. Fakouhi. Department of Pharmacology, Pahla- 
vi University, Medical School, Shiraz. Iran. Voucher specimens were identi- 
fied by R. E. Perdue and are deposited in the Herbarium of the U S .  Depart- 
ment of Agriculture, Beltsville, Md. 

An active fraction is one that exhibits an E D s  6 20 pg/ml. 
An active fraction is one that exhibits a T/C of 2125%. 
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